Bcl-2 changes conformation to inhibit Bax oligomerization.
نویسندگان
چکیده
Bcl-2 inhibits apoptosis by regulating the release of cytochrome c and other proteins from mitochondria. Oligomerization of Bax promotes cell death by permeabilizing the outer mitochondrial membrane. In transfected cells and isolated mitochondria, Bcl-2, but not the inactive point mutants Bcl-2-G145A and Bcl-2-V159D, undergoes a conformation change in the mitochondrial membrane in response to apoptotic agonists such as tBid and Bax. A mutant Bcl-2 with two cysteines introduced at positions predicted to result in a disulfide bond that would inhibit the mobility of alpha5-alpha6 helices (Bcl-2-S105C/E152C) was only active in a reducing environment. Thus, Bcl-2 must change the conformation to inhibit tBid-induced oligomerization of integral membrane Bax monomers and small oligomers. The conformationally changed Bcl-2 sequesters the integral membrane form of Bax. If Bax is in excess, apoptosis resumes as Bcl-2 is consumed by the conformational change and in complexes with Bax. Thus, Bcl-2 functions as an inhibitor of mitochondrial permeabilization by changing conformation in the mitochondrial membrane to bind membrane-inserted Bax monomers and prevent productive oligomerization of Bax.
منابع مشابه
E1B 19K blocks Bax oligomerization and tumor necrosis factor alpha-mediated apoptosis.
Tumor necrosis factor alpha (TNF-alpha)-mediated death signaling causes the recruitment of monomeric pro- apoptotic Bax into a 500-kDa protein complex. The adenovirus Bcl-2 homologue, E1B 19K, inhibits TNF-alpha-mediated apoptosis, interacts with Bax, and blocked the formation of the 500-kDa Bax complex. TNF-alpha and truncated Bid induced Bax-Bax cross-linking, indicative of oligomerization, a...
متن کاملBcl-xL Retrotranslocates Bax from the Mitochondria into the Cytosol
The Bcl-2 family member Bax translocates from the cytosol to mitochondria, where it oligomerizes and permeabilizes the mitochondrial outer membrane to promote apoptosis. Bax activity is counteracted by prosurvival Bcl-2 proteins, but how they inhibit Bax remains controversial because they neither colocalize nor form stable complexes with Bax. We constrained Bax in its native cytosolic conformat...
متن کاملKey role for Bak activation and Bak-Bax interaction in the apoptotic response to vinblastine.
Microtubule inhibitors such as vinblastine cause mitotic arrest and subsequent apoptosis through the intrinsic mitochondrial pathway. However, although Bcl-2 family proteins have been implicated as distal mediators, their precise role is largely unknown. In this study, we investigated the role of Bak in vinblastine-induced apoptosis. Bak was mainly monomeric in untreated KB-3 cells, and multime...
متن کاملSelf-regulation of BAX-induced cell death
Apoptosis, a form of programmed cell death, is a process in multicellular organisms responsible for normal tissue development and homeostasis. The intrinsic pathway of apoptosis is principally regulated by protein-protein interactions within the BCL-2 family of proteins, which can prevent or promote mitochondrial dysfunction. There are over twenty BCL-2 family proteins grouped together based on...
متن کاملEpigenetic determinants of resistance to etoposide regulation of Bcl-X(L) and Bax by tumor microenvironmental factors.
BACKGROUND Epigenetic factors (i.e., alterations of gene activity not involving mutations), as well as genetic changes in surviving cancer cells, may play an important role in drug resistance following cancer chemotherapy-a common cause of tumor relapse. Bcl-2 family proteins are central to the regulation of apoptotic cell death and modulate drug sensitivity. We investigated how survival signal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 25 11 شماره
صفحات -
تاریخ انتشار 2006